Subalgebra \(A^{35}_1\) ↪ \(A^{1}_5\)
10 out of 37
Computations done by the calculator project.

Subalgebra type: \(\displaystyle A^{35}_1\) (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{1}_5\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{35}_1\): (5, 8, 9, 8, 5): 70
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-1}+g_{-2}+g_{-3}+g_{-4}+g_{-5}\)
Positive simple generators: \(\displaystyle 5g_{5}+8g_{4}+9g_{3}+8g_{2}+5g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/35\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}70\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{10\omega_{1}}\oplus V_{8\omega_{1}}\oplus V_{6\omega_{1}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{1}}\)
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 5) ; the vectors are over the primal subalgebra.\(g_{5}+8/5g_{4}+9/5g_{3}+8/5g_{2}+g_{1}\)\(g_{9}+9/5g_{8}+9/5g_{7}+g_{6}\)\(g_{12}+8/5g_{11}+g_{10}\)\(g_{14}+g_{13}\)\(g_{15}\)
weight\(2\omega_{1}\)\(4\omega_{1}\)\(6\omega_{1}\)\(8\omega_{1}\)\(10\omega_{1}\)
Isotypic module decomposition over primal subalgebra (total 5 isotypic components).
Isotypical components + highest weight\(\displaystyle V_{2\omega_{1}} \) → (2)\(\displaystyle V_{4\omega_{1}} \) → (4)\(\displaystyle V_{6\omega_{1}} \) → (6)\(\displaystyle V_{8\omega_{1}} \) → (8)\(\displaystyle V_{10\omega_{1}} \) → (10)
Module label \(W_{1}\)\(W_{2}\)\(W_{3}\)\(W_{4}\)\(W_{5}\)
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
\(-g_{5}-8/5g_{4}-9/5g_{3}-8/5g_{2}-g_{1}\)
\(h_{5}+8/5h_{4}+9/5h_{3}+8/5h_{2}+h_{1}\)
\(2/5g_{-1}+2/5g_{-2}+2/5g_{-3}+2/5g_{-4}+2/5g_{-5}\)
\(g_{9}+9/5g_{8}+9/5g_{7}+g_{6}\)
\(g_{5}+4/5g_{4}-4/5g_{2}-g_{1}\)
\(-h_{5}-4/5h_{4}+4/5h_{2}+h_{1}\)
\(6/5g_{-1}+3/5g_{-2}-3/5g_{-4}-6/5g_{-5}\)
\(3/5g_{-6}+3/5g_{-7}+3/5g_{-8}+3/5g_{-9}\)
\(g_{12}+8/5g_{11}+g_{10}\)
\(g_{9}+3/5g_{8}-3/5g_{7}-g_{6}\)
\(g_{5}-2/5g_{4}-6/5g_{3}-2/5g_{2}+g_{1}\)
\(-h_{5}+2/5h_{4}+6/5h_{3}+2/5h_{2}-h_{1}\)
\(-12/5g_{-1}+3/5g_{-2}+8/5g_{-3}+3/5g_{-4}-12/5g_{-5}\)
\(-3g_{-6}-g_{-7}+g_{-8}+3g_{-9}\)
\(-2g_{-10}-2g_{-11}-2g_{-12}\)
\(g_{14}+g_{13}\)
\(g_{12}-g_{10}\)
\(g_{9}-g_{8}-g_{7}+g_{6}\)
\(g_{5}-2g_{4}+2g_{2}-g_{1}\)
\(-h_{5}+2h_{4}-2h_{2}+h_{1}\)
\(4g_{-1}-5g_{-2}+5g_{-4}-4g_{-5}\)
\(9g_{-6}-5g_{-7}-5g_{-8}+9g_{-9}\)
\(14g_{-10}-14g_{-12}\)
\(14g_{-13}+14g_{-14}\)
\(g_{15}\)
\(g_{14}-g_{13}\)
\(g_{12}-2g_{11}+g_{10}\)
\(g_{9}-3g_{8}+3g_{7}-g_{6}\)
\(g_{5}-4g_{4}+6g_{3}-4g_{2}+g_{1}\)
\(-h_{5}+4h_{4}-6h_{3}+4h_{2}-h_{1}\)
\(-6g_{-1}+15g_{-2}-20g_{-3}+15g_{-4}-6g_{-5}\)
\(-21g_{-6}+35g_{-7}-35g_{-8}+21g_{-9}\)
\(-56g_{-10}+70g_{-11}-56g_{-12}\)
\(-126g_{-13}+126g_{-14}\)
\(-252g_{-15}\)
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
\(6\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
\(-6\omega_{1}\)
\(8\omega_{1}\)
\(6\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
\(-6\omega_{1}\)
\(-8\omega_{1}\)
\(10\omega_{1}\)
\(8\omega_{1}\)
\(6\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
\(-6\omega_{1}\)
\(-8\omega_{1}\)
\(-10\omega_{1}\)
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
\(6\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
\(-6\omega_{1}\)
\(8\omega_{1}\)
\(6\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
\(-6\omega_{1}\)
\(-8\omega_{1}\)
\(10\omega_{1}\)
\(8\omega_{1}\)
\(6\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
\(-6\omega_{1}\)
\(-8\omega_{1}\)
\(-10\omega_{1}\)
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.\(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\)\(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\)\(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\)\(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}
\oplus M_{-8\omega_{1}}\)
\(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}
\oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\)
Isotypic character\(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\)\(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\)\(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\)\(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}
\oplus M_{-8\omega_{1}}\)
\(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}
\oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\)

Semisimple subalgebra: W_{1}
Centralizer extension: 0


Made total 56408 arithmetic operations while solving the Serre relations polynomial system.